1,873 research outputs found

    Binaries are the best single stars

    Full text link
    Stellar models of massive single stars are still plagued by major uncertainties. Testing and calibrating against observations is essential for their reliability. For this purpose one preferably uses observed stars that have never experienced strong binary interaction, i.e. "true single stars". However, the binary fraction among massive stars is high and identifying "true single stars" is not straight forward. Binary interaction affects systems in such a way that the initially less massive star becomes, or appears to be, single. For example, mass transfer results in a widening of the orbit and a decrease of the luminosity of the donor star, which makes it very hard to detect. After a merger or disruption of the system by the supernova explosion, no companion will be present. The only unambiguous identification of "true single stars" is possible in detached binaries, which contain two main-sequence stars. For these systems we can exclude the occurrence of mass transfer since their birth. A further advantage is that binaries can often provide us with direct measurements of the fundamental stellar parameters. Therefore, we argue these binaries are worth the effort needed to observe and analyze them. They may provide the most stringent test cases for single stellar models.Comment: 5 pages, 1 figure, contribution to the proceedings of "The multi-wavelength view of hot, massive stars", 39th Li`ege Int. Astroph. Coll., 12-16 July 201

    ANTY 513.01: Seminar in Bioarchaeology and Skeletal Biology

    Get PDF

    ANTY 210N.01: Introduction to Physical Anthropology

    Get PDF

    ANTY 513.01: Seminar - Bioarchaeology & Skeletal Biology

    Get PDF

    ANTY 413.01: Forensic and Mortuary Archaeology

    Get PDF

    FT-IR Emission Spectra of Chemisorbed Species, with Application to Species Adsorbed on Alumina

    Get PDF
    The principles of infrared emission spectroscopy are briefly reviewed with emphasis on the aspects of its application to the study of chemisorbed species. The ma in problems of sample preparation, selection of measurement conditions and the most suitable methods of data treatment are discussed. IR emittance spectra of two typical support materials for supported metal catalysts, alumina and silica, are presented. On the example of a rhenium complex, tetrakisttricarbonyl-us-hydroxo- rhenium), formed on alumina support in catalytic amounts (1.5 to 5% Re) it is shown that the four-measurement technique can lead to observation of the adsorbate bands also in the regions of high substrate emission (between 1300 and 400 cm-1)

    Massive binaries and the enrichment of the interstellar medium in globular clusters

    Full text link
    Abundance anomalies observed in globular cluster stars indicate pollution with material processed by hydrogen burning. Two main sources have been suggested: asymptotic giant branch stars and massive stars rotating near the break-up limit. We discuss the potential of massive binaries as an interesting alternative source of processed material. We discuss observational evidence for mass shedding from interacting binaries. In contrast to the fast, radiatively driven winds of massive stars, this material is typically ejected with low velocity. We expect that it remains inside the potential well of a globular cluster and becomes available for the formation or pollution of a second generation of stars. We estimate that the amount of processed low-velocity material that can be ejected by massive binaries is larger than the contribution of two previously suggested sources combined.Comment: 6 pages, 2 figures, to appear in the proceedings of IAU Symposium 266, "Star Clusters - Basic Galactic Building Blocks throughout Time and Space", 10-14 August 2009, at the general assembly in Rio de Janeiro, Brazi

    Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    Get PDF
    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyse the evolution of stellar mass functions of coeval main sequence stars including all relevant aspects of single- and binary-star evolution. We show that the slope of the upper part of the mass function in a stellar cluster can be quite different to the slope of the initial mass function. Wind mass loss from massive stars leads to an accumulation of stars which is visible as a peak at the high mass end of mass functions, thereby flattening the mass function slope. Mass accretion and mergers in close binary systems create a tail of rejuvenated binary products. These blue straggler stars extend the single star mass function by up to a factor of two in mass and can appear up to ten times younger than their parent stellar cluster. Cluster ages derived from their most massive stars that are close to the turn-off may thus be significantly biased. To overcome such difficulties, we propose the use of the binary tail of stellar mass functions as an unambiguous clock to derive the cluster age because the location of the onset of the binary tail identifies the cluster turn-off mass. It is indicated by a pronounced jump in the mass function of old stellar populations and by the wind mass loss peak in young stellar populations. We further characterise the binary induced blue straggler population in star clusters in terms of their frequency, binary fraction and apparent age.Comment: 21 pages, 22 figures, accepted for publication in Ap

    Fast rotating stars resulting from binary evolution will often appear to be single

    Full text link
    Rapidly rotating stars are readily produced in binary systems. An accreting star in a binary system can be spun up by mass accretion and quickly approach the break-up limit. Mergers between two stars in a binary are expected to result in massive, fast rotating stars. These rapid rotators may appear as Be or Oe stars or at low metallicity they may be progenitors of long gamma-ray bursts. Given the high frequency of massive stars in close binaries it seems likely that a large fraction of rapidly rotating stars result from binary interaction. It is not straightforward to distinguish a a fast rotator that was born as a rapidly rotating single star from a fast rotator that resulted from some kind of binary interaction. Rapidly rotating stars resulting from binary interaction will often appear to be single because the companion tends to be a low mass, low luminosity star in a wide orbit. Alternatively, they became single stars after a merger or disruption of the binary system during the supernova explosion of the primary. The absence of evidence for a companion does not guarantee that the system did not experience binary interaction in the past. If binary interaction is one of the main causes of high stellar rotation rates, the binary fraction is expected to be smaller among fast rotators. How this prediction depend on uncertainties in the physics of the binary interactions requires further investigation.Comment: 2 pages, 1 figure, to be published in the proceedings of IAU 272 "Active OB stars: structure, evolution, mass loss and critical limit", Paris 19-23 July 201
    corecore